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ABSTRACT: In the present day due to the increase of 
load demands day by day, Power system becomes 
complex, and it is operating near its bus voltage 
regulation limits and thermal capacity limits of the 
lines. So, it is vital to maintaining power system 
security for every possible operating condition 
including contingencies. The traditional method of 
static security assessment using load flow requires 
long computation time and complex calculations. 
This paper presents a Support Vector Machine based 
Binary-classifier for static security assessment 
of the power system.  The proposed classifier 
classifies power system operating condition into 
secure and insecure, based on the computation of 
the Composite Security Index (CSI). Thermal limit 
of the transmission lines is chosen on the base of 
load ability limit of the short, medium and long 
transmission line. Single ranking and Correlation 
Coefficient Method is used for feature selection. 
The proposed approach is implemented, and 
classification accuracy is verified on IEEE 14 and 30 
bus systems.

1. INTRODUCTION
Power system mainly deals with generation, 
transmission, and distribution of electrical power. Due to 
increasing of day to day requirement of power one has 
to increase generation of electrical power. At the same 
time, there is a need for enough structure for distribution 
and transmission networks. All generating stations, 
transmission lines, and distribution lines are working in 
overloaded condition due to limited structure and limited 
sources of electrical power generation. Power system 
security includes the process of keeping the system 
operating when disturbances occur in the power system. 
Disturbances in the power system are due to outages of 
transmission lines, Generators, and Transformers, etc.

Power system security analysis is carried out in 
control center, and it is divided into mainly three 
categories, viz., power system monitoring, contingency 
analysis, and security constrained optimal power flow 
(Wood&Wollenberg, 2012). A power system security 
assessment is the steps performed to determine whether 
the system is safe from serious outages and to what 
extent it is safe in its operation (Kalyani&Swarup, 2009). 

The concepts of power system security and stability are 
interrelated in power systems. There are three modes 
of the stability on operational point of view, viz., steady-
state stability, which is related to the system steady-state 
condition following any small disturbance, transient 
stability, which discusses with the capacity of the system 
to remain in synchronism when a large disturbance 
occurs, and dynamic stability, which concerns with the 
system's long-term response. Based on the three modes 
of stability System security can be classified into the 
three modes. The method of security is classified based 
on the specific outages, variables used for analysis and 
time after the outage. Nevertheless, after analyzing 
the condition, the system can be classified as Steady 
state or transient or dynamic secure if it is stable for 
every outage in the contingency list defined for each 
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mode respectively. Otherwise, it is called as insecure 
(Costa&Munro, 1984).

Static security is the ability of a power system to 
reach a steady state operating point without violating 
the system operating limits following a contingency 
(Mohammad&Yaoya, 2003). Evaluation of Static security 
is called as static security assessment. Traditional 
methods used for contingency analysis is time-
consuming. Full AC load flow is utilized for each outage 
in traditional contingency analysis. The complete 
procedure required for contingency analysis requires lots 
of time and gives many results. The traditional methods 
are not suitable for real-time applications due to varying 
nature of the power system (Pang&Koivo, 1973).The 
engineer working in the control center requires enough 
time to take the control action. If enough time is not 
given to the engineer cascade tripping of the several 
types of equipment may occur. The main requirement 
of the consumer from the utility is the availability of 
the power as and when required. So, the growth of the 
country or the society depends on the reliability and 
quality of the power.

Several Artificial Intelligence techniques were used in 
security assessment since last four decades. Artificial 
intelligence techniques like the Self-Organization 
feature map (Niebur&Germond, 1992; Swarup&Corthis, 
2002), and Multi-layered feed forward network 
(Swarup&Corthis, 2002), (Saeth&Khairuddin, 2008) 
have been applied to the problem of static security 
assessment. Some of the literature also reported the 
use of Radial Basis Function Neural Network (Refaee 
et al.,1999; Jain et al. ,2003), a Genetic-Based Neural 
Networks (Aini, 2001) and Query-Based learning 
approach in Artificial Neural Network (Huang, 2001). 
Techniques other than Artificial Neural Network (ANN) 
used in the static security assessment are problem 
dependent. Neural Networks are good in interpolation 
but not so good in the extrapolation, which reduces 
its generalization ability (Kalyani&Swarup, 2001). To 
overcome the disadvantages of ANN the researchers 
started use of Support Vector Machine (SVM) based 
classifier for static security assessment (Kalyani&Swarup, 
2011). In the available literature, Static Security states 
were classified based on either by Equality and Non-
equality constraints or using Performance Index. In 
most of the literature, the crucial part is to decide 
weighting factor to calculate Security Index. Selection of 
weighting factor depends on knowledge and experience 
of the concerned person associated with the particular 
system. The wrong choice of weighting factor leads 
to misclassification of security states. Static Security 

Index was used in the classification of static security 
states (Kalyani&Swarup, 2011)in which weighting 
factor is assumed on the base of knowledge and 
experience. Composite Security Index (CSI) is defined 
in (Sunitha&Kumar, 2011) and builds on the concept 
of a hyper-ellipse inscribed within the hyper-box. The 
main advantage of CSI is that in the calculation there 
is no need to select proper value of weighting factor. In 
the most of the literature found, thermal limits of the 
transmission lines are assumed in the Static Security 
assessment. 

The main work presented in this article are 
(Wood&Wollenberg, 2012) Composite Security Index 
is used instead of Performance index with weighting 
factors. (Kalyani&Swarup, 2013) The thermal limits of 
the transmission lines are calculated and considered 
on the base of load ability of the transmission line for 
short, medium and long lines for calculation of CSI. 
The load ability limits of short, medium and long lines 
are considered based on surge impedance loading, 
percentage voltage regulation, and steady-state stability 
limit's of the lines respectively. The SVM classifier is 
designed for Binary-class classification. Based on the 
value of CSI the classifier is intended to classify the 
state into secure and insecure following Static Security 
assessment. The proposed SVM classifier is applied to the 
IEEE 14 and 30 bus systems.

The remaining part of this paper is structured as follows: 
Static Security Assessment using the composite security 
index based on the concept of a hyper-ellipse inscribed 
within the hyper-box is explained in Section 2. The 
approach utilized for the calculation of the thermal 
limit of the transmission line is briefly described in 
Section 3. The design of Static Security Classifier using 
Pattern Recognition Approach is explained in Section 
4. Performance evaluation of the classifier is given in 
Section 5 and Results, and discussions are presented in 
Section 6.
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2. STATIC SECURITY ASSESSMENT USING 
COMPOSITE SECURITY INDEX

The composite security index is the combination of the 
two terms line flow and bus voltage limit violations. Two 
kinds of limits are defined for bus voltage, and line flows, 
viz., the security limit and the alarm limit. The security 
limit is the maximum limit specified for the bus voltages 
and line flows. The alarm limit represents alarm zone 
adjacent to the security limit, which gives an indication 
of nearness to limit violations (Sunitha et al., 2011).The 
system is said insecure if any bus voltages or line flows 
violate their security limit. If any bus voltages or line 
flows violate their alarm limit without violating their 
security limit, the system is considered to be in the alarm 
state. If none of the voltages or line flows violates an 
alarm limit,the system is called secure. This is specified 
by a value of “0”. The upper and lower alarm limits and 
security limits of bus voltages are denoted as Ai

u, Ai
l, Vi

u 
and Vi

l respectively. The normalized upper and lower 
voltage limit violations above the alarm limits are given 
in (1):

	 Yv,i
u =		  ; if Vi > Ai

u

	 Yv,i
u = 0		  ; if Vi ≤ Ai

u

	 Yv,i
l = 		  ; if Vi < Ai

l

	 Yv,i
l = 0		  ; if Vi ≥ Ai

l	 (1)

Where Vi is the voltage magnitude at bus i. For all upper 
and lower limit of bus voltages, the normalization factor 
Dv,i is given in (2):

	 Zv,i
u =

	 Zv,i
l =				    (2)

From equation (1) and (2), the value of the ratio (Y/Z) 
will give a value of "0" if the value of the bus voltage is 
between lower and upper alarm limit. It is classified as 
the secure state. If the value of the bus voltage is greater 
than the upper alarm limit or less than the lower alarm 
limit, it gives a value (Y/Z) greater than "0". It is classified 
as the alarm state. If the value of the bus voltage is 
greater than the upper-security limit or less than the 
lower security limit, it gives a value (Y/Z) greater than “1”. 

It is classified as the insecure state. 

For line flows, the limit violation vectors and the 
normalization factor are defined similarly. Since only the 
maximum limits are necessary to be stated for the power 
flow through each line, two types of upper limits are 
given for each line: the alarm limit and the security limit. 
The security limit is the maximum limit of the power 
flowthrough the line. The normalized violation vectors 
for each line j are given in (3):

	 Xp,j = 		    ; if |Pj| > P(A,j)

	 Xp,j = 0		    ; if |Pj| ≤ P(A,j)	 (3)

Where jJ is the absolute value of the power flow through 
the line and PA,j is the alarm limit for power flow. The 
normalization factor for each line is given in (4):

	 ZP,j = 				    (4)

Where PP,j is the security limit of the jth transmission line. 
Here also, the system can be classified with respect to 
the power flow through the line viz. secure, alarm and 
insecure based on the value of (Y/Z) vector.

The concept of hyper-ellipse inscribed within the hyper-
box is used for constructing the scalar valued composite 
security index PIcom from the violation vectors are given in 
equation 1, 2, 3 and 4 it is given in (5) as

PIcom = [ ∑(   ) + ∑(   ) + ∑(  ) ] (5)

Where "n" is the exponent used in the hyper ellipse 
equation. The value of "n" is chosen as "2", because the 
approximation of hyper-box to the hyper-ellipse has not 
improved beyond "n" = 2 (Sunitha et al., 2011). From 
the value of the composite security index, the system is 
classified to be in one of the two states as given in Table 1.
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 ]
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TABLE 1. Class Categories for Security Assessment

Composite Security Index (CSI) Class Category

PIcom ≤ 1 Secure

PIcom > 1 Insecure
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FIGURE 1. Main steps in design of static security classifier

3. CALCULATIONS OF THERMAL LIMIT OF THE 
TRANSMISSION LINES
In most of the work presented in the literature thermal 
limit or security limit of the transmission lines are 
assumed, the thermal limit of the transmission lines is 
provided by the manufacturer of the transmission line. 
Thermal limits of the IEEE standard bus systems are not 
available in the available kinds of literature. Most of the 
researchers have assumed thermal limits on the base of 
the experience. Kalyani et al., (2011) assumed thermal 
limit or MVA limit of system branches as 130% of the 
base case. Kalyani&Swarup, (2009) and Sekhar et al., 
(2016) assumed allowable maximum power flow through 
the transmission line using maximum power transfer 
equation in which ẟ is taken as 90⁰ (Shekhar&Mohanty, 
2016), but according to steady state stability, we can 
allow the value of ẟ in between 40⁰ to 45⁰. 

In this work, the thermal limits of the IEEE standard test 
systems are considered based on loadability limit of 
the transmission line. The transmission lines of the IEEE 
standard test systems are classified as short, medium 
and long lines based on X/R ratio. The loadability limit 
of the short transmission line is equal to the thermal 
limits of the line and that is decided on the base of surge 
impedance loading. The voltage drop limit determines 
the loadability limit of the medium line. The ratio VR/
VS ≥ 0.95 is taken to decide the loadability limit of the 
medium line. The steady state stability is a limiting factor 
for the loadability limit for the long transmission line 
(Duncan&Sharma, 2012). For calculation of loadability 
limit of the long transmission line, the angle ẟ is taken as 
45⁰ in equation 6.

	 Pmax =	       sin ẟ		 	 (6)
Vi

  Vj

Xij

4. DESIGN OF STATIC SECURITY CLASSIFIER 
USING PATTERN RECOGNITION APPROACH
A pattern is a pair consists of information or observation 
and the meaning of the observation. Pattern recognition 
interprets meaning from observation or information. 
Pattern recognition is defined as the operation of taking 
raw data and taking action based on the class of data. 
Classifying the patterns based on either past knowledge 
about the system or statistical information is obtained 
from the patterns. The main aim of applying pattern 
recognition approach to security assessment is to 
reduce the online computation time (Kalyani&Swarup, 
2011). It can be done at the cost of an extended offline 
computation. The progression of steps carried out in the 
design of static security classifier is represented in the 
form of the flow chart in Figure 1.

As shown in Figure 1, the design of static security 
classifier using SVM goes through a series of sequential 
steps. In upcoming sections, explain the steps and 
Support Vector Machine used in the classification 
scheme. The main stages are data generation, 
normalization, feature selection, classifier design and 
performance evaluation.

Generation of input/ output of patterns
	 - Input of patterns - Variables/ Features
	 - Output of patterns - Security Index

Divide patterns into training and testing patterns
	 - 90% patterns for training
	 - 10% patterns for testing

Normalization of input variables for classification

Feature Selection using Single Ranking Method

Training Patterns

Output

Training of SVM 
for Classification

Classification 
Function

Testing Patterns
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4.1. DATA OR PATTERN GENERATION

The success of any classifier depends on good and 
wide ranges of the training sets. The training set must 
represent entire operating states of the power system 
(Kalyani & Swarup, 2009). This training set can be formed 
either by collecting past real measurements or by offline 
studies of the power system. A large number of operating 
scenarios are generated through offline simulations. 
Each operating scenario is considered as a pattern. Each 
pattern consists of power system variables such as bus 
voltages (Vi), bus angles (ẟi), active and reactive bus loads 
(Pi and Qi), active and reactive generations (PGi and GQ), 
active and reactive power flows (Pij and Qij) through the 
transmission line. Patterns are generated by changing 
the load on the bunch of the buses from 50% to 150% 
of the original load arbitrary. Single line contingency is 
considered for this work.

4.2. NORMALIZATION OF DATA

Normalization of pattern variables is done to improve 
the performance of the algorithm. The main advantage 
of normalization in Support Vector Machine is helpful 
to reduce the effect of the attributes in greater numeric 
ranges on the attributes of the smaller numeric ranges, 
and it also reduces numerical difficulties during the 
calculation. Because kernel values usually depend on the 
inner products of feature vectors, e.g. the linear kernel 
and the polynomial kernel, large attribute values might 
cause numerical problems. The variables in the feature 
vector are normalized in the range (Wood&Wollenberg, 
2012) using the min-max normalization method. It is one 
of the widely used techniques by most of the researchers 
for the data scaling process (Kalyani&Swarup, 2011).

4.3. FEATURE SELECTION

The success of any classifier depends on the 
selected features for the classification. To get 
complete information about the nature of the power 
system, the features are selected in high numbers. 
Therefore, it is important to decide the relatively 
small number of features unique for classification 
(Weerasooriya&Sharkawi, 1992). Feature selection is 
a process of selecting important features from a total 
number of features. Selected feature will give more useful 
information than not selected features. Engineering 
judgments may select features, but occasionally it may 
lead to rejection of important features.

Single ranking and Correlation Coefficient Method is used 
for feature selection. The heuristic notion of interclass 
distance is used to select the important features. The 

average pair wise distance between the patterns is useful 
information for the measure of class separability in the 
region concerning the particular variable. The index Fi 
provides a measure of this class separation concerning 
the ith variables.

	 Fi =		   1 ≤ i ≤ 1	 (3)

Where,

	 mi
(S) = 	      ∑ Xij

(S)

	 mi
(S) = 	      ∑ Xij

(S)

	 σi
(S) =         ∑  { Xij

(S) - mi
(S) } 2

	 σi
(I) =         ∑  { Xij

(I) - mi
(I) } 2

Where, mi
(.) and σi

(.)  are mean and variance if variable 
corresponding to class (.). The superscript (S) stands for 
‘secure’ while (I) stands for ‘insecure’. N(S) and N(I) indicate    
the number of secure and insecure patterns that form the 
training set {N = N(S) + N(I)}. Variables with higher values of 
F suggest more information about class separability than 
others. Therefore classification can be based on selected 
variables which will be referred to as features.

The correlation coefficient between the ith and the jth 
variable is defined as:

	 CCij = 		                 i,j = 1,2,...,n

Where,

	 E{yi yj } =      ∑ yik yjk

	 E{yi } =      ∑ yik

	 σi
2 =      ∑ (yik - E{yi })2

mi
(s) - mi

(l)

σi
(S) - σi

(I)2 2

N(S)

N(S)

j=1

j=1

1
N(S)

E{yi yj } - E{yi }E{yj }
σi σj

1
N(S)

2 1
N(S)

N(S)

j=1

1
N(I)

N(I)

j=1

2

1
N

1
N

1
N

N

N

N

k=1

k=1

k=1
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The following steps for feature selection:

1. Calculate Fi for all i such that 0 ≤ i ≤ n.
2. Arrange variables according to the descending order of 

Fi.
3. Go to the first variable with highest Fi value.
4. Calculate correlation coefficients if all remaining 

variables with respect to this variable. 
5. Eliminate all variables which have the value greater 

than 0.9 values.
6. Go to the next highest ranked variables and go to step 

4.

4.4. CLASSIFIER DESIGN USING BINARY CLASS 
SUPPORT VECTOR MACHINE 

The classifier gives the boundary between separating 
classes. The accuracy of the classifier depends on 
the data provided for training purpose. The training 
algorithms available are least squares, back propagation, 
linear programming, etc., to design the classifier 
(Mohammad&Yaoyu, 2003). These existing algorithms 
consume less time, but have certain limitations such as 
poor classification accuracy and high misclassification 
rate, specifically when the size of the problem increases. 
So, Support Vector Machine is used for efficient training 
procedure. The static security assessment problem is 
treated as binary class pattern classification problem in 
this work. 

SVM classifier reduces the generalization error by 
optimizing the trade-off between the number of training 
errors. SVMs in most of the cases are found to provide 
better classification results than other widely used 
pattern recognition classifiers. SVMs carry out the task 
of the binary classification by mapping the input data 
to a multidimensional feature space, and then it will 
construct an optimal hyper plane classifier separating 
the two classes with maximum margin. For minimization 
of the error optimal hyper plane is built by an iterative 
training algorithm in the SVM. Consider a training set  
T = {xi, yi}, where xi is a real-valued n-dimensional input 
vector and yiϵ {0, 1} is a label that determines the class 
of data instance, xi. For the construction of optimal 
separating hyper plane, the SVM classifier solves the 
following optimization problem.

	                  wTw + C∑ ξi

Subject to

	 yi (wTØ(xi ) + b ≥ 1 - ξi ;   ξi ≥ 0,      i = 1,2,…..,l

Where w is the weight vector of the hyper plane, C is 
the penalty parameter proportional to the amount of 
the constraint violation, ξi is the slack variable, Ø (.) is 
a mapping function called ‘kernel' function and b is 
the threshold. The kernel function maps the data into 
the feature space from the input space where they are 
linearly separable. The concept of kernel mapping let on 
the SVM models to perform separations even with very 
complex boundaries. In this paper, Radial Basis Function 
kernel is used in the design of Binary class Support 
Vector Machine model.

4.4.1 CHOICE OF KERNEL

The Radial Basis Function (RBF) is used as the Kernel 
mapping function because of its widely known accuracy, 
and it is capable of handling non-linear relations 
between the class labels and input features.

4.4.2. ADJUSTING THE KERNEL PARAMETERS

Two parameters associated with RBF functions are to 
be selected (1) penalty parameter C and (2) RBF kernel 
parameter ץ. The main aim is to identify optimal (C,ץ) 
for the classifier to accurately predict unknown data. 
The grid search technique is used for selection of 
parameters because it is the most common method used 
to determine SVM parameters. In v cross-validation, the 
whole training set is equally divided into v subsets, v-1 
subsets are used for training purpose, and one remaining 
subset is used for testing of trained classifier. This 
procedure is repeated for the various set of subsets. The 
cross-validation accuracy is calculated by the percentage 
of data samples correctly classified. Here Grid search is 
used on C and ץ using 5-cross-validation. All pairs of C 
and ץ were tried, and the one pair is selected which will 
give highest cross-validation accuracy. The sequence was 
used C= {2-5, 2-4, 2-3… 215} and {25 …2-13 ,2-14 ,2-15} = ץ. 

4.4.3. TRAINING AND TESTING OF SVM CLASSIFIER

Once kernel parameters are selected SVM classifier is 
trained with the normalized input-output training data 
samples. On the satisfactory performance of the SVM 
classifier in the training phase, it is validated with test 
data samples to check its overall performance.

1
2

min
w,b,ξ

l

i=1
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5. PERFORMANCE EVALUATION OF 
CLASSIFIER
The performance evaluation of trained classifier is 
validated using following performance measures:

1. Classification Accuracy (CA) 

     Classification Accuracy (%) = 

				                 x 100

2. Secure Misclassification Rate (SMCR)

     Secure Misclassification Rate (%) = 

			                 x 100

3. Insecure Misclassification Rate (ISMCR)

     Insecure Misclassification Rate (%) = 

			                 x 100

In the static security assessment, it is necessary to make 
sure that the misclassification rate is as small as possible. 
Especially, the chances of an insecure state being 
wrongly predicted as secure states need to be reduced. 
So, the Classifier for the static security assessment must 
be designed to have high classification accuracy and less 
misclassification rate.

6. RESULTS AND DISCUSSIONS
The proposed work aims to develop a static security 
assessment Binary-classifier using Support Vector 
Machine. The proposed binary class SVM classifier 
is implemented in IEEE 14 and 30 bus test systems 
(Zimmerman&Gan, 1997). Data are generated by varying 
loads in the bunch of buses between 50% to 150% of 
their base case values arbitrary. Single line contingency 
is considered for each operating scenario. A load flow 
solution is done using Newton-Raphson method. Data 
generation is done with the help of MATPOWER toolbox 
(Zimmerman&Gan, 1997). LIBSVM software developed 
by C. C. Chang and C. J. Lin is used for SVM binary-
classifier design (Chang&Lin, 2001). For calculation of the 
composite security index, we have to choose both alarm 
and security limits for bus voltages and line flows. ± 5% 
and ± 7% of the desired bus voltage values are taken 
as alarm and security limits for bus voltages. Security 
limit for the transmission line is calculated as explained 
in section 3. Alarm limit is taken as the 80% of security 
limit. For PV buses the specified bus voltage is taken as 
desired bus voltage and for PQ buses "1 p.u." is taken as 

the desired bus voltage. Approximately, 90% of data used 
for training and 10% of data used for testing. Feature 
selection is done by Single Ranking and Correlation 
Coefficient method. Results of feature selection and 
data generation for static security assessment are 
given in Table 2, Table 3 and Table 4. Table 2 gives the 
dimensionality reduction achieved by the Single Ranking 
and Correlation Coefficient method. The complexity of 
the classifier is reduced due to fewer numbers of feature 
used, it leads to reduction of training and testing time 
in the implementation of SVM. Results of the parameter 
selected by the Grid Search using 5-cross-validation are 
given in Table 5. Performances of the SVM-based binary-
classifier on the IEEE standard test systems are given in 
Table 6.

(No. of samples classified correctly)
(Total no. of samples in data set)

(No. of 0's classified as 1)
(Total no. of insecure states)

(No. of 1's classified as 0)
(Total no. of secure states)

TABLE 2. Dimensionality reduction due to single ranking feature 

selection method

TABLE 4. Data generation for static security assessment

TABLE 3. Features selected by single ranking and correlation 

method

IEEE 14 Bus 
System

IEEE 30 Bus 
System

No. of Variables 106 214

No. of Feature Selected By 
Single Ranking Method 10 24

Dimensionality Reduction 9.43% 11.21%

IEEE 14 Bus 
System

IEEE 30 Bus 
System

Total Operating Scenarios 500 975

Total Operating Scenarios 312 743

Total Insecure Cases 188 232

Training Set

Operating Scenarios 440 819

Secure Cases 281 614

Insecure Cases 159 205

Testing Set

Operating Scenarios 60 156

Secure Cases 31 129

Insecure Cases 29 27

IEEE 14 Bus System V9, V11, V14, V12, V10, P5-6, PG1, Q5-6, P2-3, P6-13

IEEE 30 Bus System
QG1, QG5, QG2, PG1, V7, V28, QG8, Q2-5, V20, 

P4-12, P12-14, Q6-7, V14, V15, P15-18, Q6-28, P12-15, 
Q9-10, Q24-25, V24, P9-11, V23, Q28-27, P15-23
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The performance of the SVM-based binary-classifiers on 
the test system is found quite satisfactory regarding the 
high classification accuracy and less misclassification 
rate. Secure Misclassification is not dangerous to the 
system because it is giving the false alarm. However 
Insecure Misclassifications are dangerous because here 
the insecure state is classified as the secure state and it is 
also called as the false dismissal. In IEEE 14 bus system, 
total four misclassifications occur in testing, in which 
three secure states classified as the insecure state, one 
insecure state is classified as the secure state. So, only 
one misclassification is dangerous. In the results of the 
IEEE 30 bus system, two secure states are classified as 
the insecure states; one insecure state is classified as 
the secure states. Less misclassification rate for insecure 
cases represents the effectiveness of the classifier. 

TABLE 5. Result of parameter selection of radial basis function 

using grid search and 5-cross validation

System
Selected parameters value (Parameter Ranges 

C = (2-5, 215 in step of 21) and  
( (in step of 21 25 ,2-15) = ץ

IEEE 14 Bus 
System                      C = 128.0                    1.0 = ץ

IEEE 30 Bus 
System                      C = 16384.0               0.0625 = ץ

TABLE 6. Performance evaluation of SVM classifiers on train set 

and test set

IEEE 14 Bus 
System

IEEE 30 Bus 
System

Train Set

5-Cross Validation CA (%) 99.091% 98.53%

Samples CA (%) 99.55% 
(438/440)

99.88% 
(818/819)

SMC (%) 0.629% (1/159) 0% (0/205)

ISMC (%) 0.356% (1/281) 0.1628% 
(1/614)

Test Set

Samples CA (%) 93.33% (56/60) 98.07% 
(153/156)

SMC (%) 10.34% (3/29) 7.41% (2/27)

ISMC (%) 3.23% (1/31) 0.775% (1/129)

Overall CA (%) (Training 
and Testing)

98.80% 
(494/500)

99.59% 
(971/975)

7. CONCLUSION & POLICY IMPROVEMENT
This paper has proposed a binary-classifier based 
on the Support Vector Machine for the static security 
assessment of the power system. Selection of the 
weighting factor is eliminated due to the use of CSI 
instead of other performance indices. Thermal limit 
of the transmission lines is selected based on the 
loadability of the transmission line. The loadability 
of the transmission line is calculated by classifying 
transmission line into the short, medium and long 
transmission line. The classification of the power 
system indicates the security states to the operator, 
as the trained Support Vector Machine based classifier 
predicts the security state of the power system in the 
fraction of second; it helps to initiate control action as 
early as possible. So, Cascade tripping of the power 
system is avoided. The proposed binary-classifier 
was tested on IEEE standard test systems. Simulation 
results have proven high classification accuracy and 
fewer misclassification rates of the binary-classifier, 
Especially Insecure misclassifications are very less. Due 
to less time in the prediction of the security state and 
less insecure misclassification rate making it suitable for 
online implementation. The prediction of the security 
state in the small possible time for the present operating 
scenario will help utility to give reliable power to the 
society. Future work is the implementation of the Binary 
Class SVM to the larger systems.
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